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Abstract
Background: B-vitamins are essential for one-carbon metabolism and have been linked to colorectal cancer.

Although associations with folate have frequently been studied, studies on other plasma vitamins B2, B6, and
B12 and colorectal cancer are scarce or inconclusive.

Methods: We carried out a nested case-control study within the European Prospective Investigation into
Cancer and Nutrition, including 1,365 incident colorectal cancer cases and 2,319 controls matched for study
center, age, and sex. We measured the sum of B2 species riboflavin and flavin mononucleotide, and the sum of
B6 species pyridoxal 5′-phosphate, pyridoxal, and 4-pyridoxic acid as indicators for vitamin B2 and B6 status,
as well as vitamin B12 in plasma samples collected at baseline. In addition, we determined eight polymorph-
isms related to one-carbon metabolism. Relative risks for colorectal cancer were estimated using conditional
logistic regression, adjusted for smoking, education, physical activity, body mass index, alcohol consumption,
and intakes of fiber and red and processed meat.

Results: The relative risks comparing highest to lowest quintile were 0.71 [95% confidence interval
(95% CI), 0.56-0.91; Ptrend = 0.02] for vitamin B2, 0.68 (95% CI, 0.53-0.87; Ptrend <0.001) for vitamin B6,
and 1.02 (95% CI, 0.80-1.29; Ptrend = 0.19) for vitamin B12. The associations for vitamin B6 were stronger
in males who consumed ≥30 g alcohol/day. The polymorphisms were not associated with colorectal
cancer.

Conclusions: Higher plasma concentrations of vitamins B2 and B6 are associated with a lower colorectal
cancer risk.

Impact: This European population-based study is the first to indicate that vitamin B2 is inversely associated
with colorectal cancer, and is in agreement with previously suggested inverse associations of vitamin B6 with
colorectal cancer. Cancer Epidemiol Biomarkers Prev; 19(10); 2549–61. ©2010 AACR.

Introduction

The one-carbon metabolism is related to carcinogene-
sis because of its involvement in the synthesis of pur-

ines and pyrimidines for subsequent DNA synthesis,
and in the synthesis of methionine for DNA meth-
ylation. Aberrations in DNA synthesis and DNA meth-
ylation may contribute to colorectal carcinogenesis.
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B-vitamins and related genetic polymorphisms are essen-
tial for the one-carbon metabolism, and may therefore be
associated with colorectal cancer (1). Among the B-
vitamins, folate has been studied most extensively in rela-
tion to colorectal cancer. The majority of studies on folate
intake indicate a 20% to 40% colorectal cancer risk reduc-
tion in individuals with the highest compared with the
lowest intake, whereas associations between plasma
concentrations of folate and colorectal cancer risk are in-
consistent (1). Other B-vitamins, such as vitamins B2, B6,
and B12, are also involved in the one-carbon metabolism.
Vitamins B2 and B6 are related because the interconver-

sion of some vitamin B6 species require the vitamin B2
forms flavin mononucleotide (FMN) and flavin dinucleo-
tide (FAD) as cofactors (2). Moreover, vitamin B2 serves as
a cofactor for the methyl-metabolizing enzymes methyle-
netetrahydrofolate reductase (MTHFR), which regener-
ates 5-methyltetrahydrofolate from tetrahydrofolate, and
methionine synthase reductase (MTRR), which activates
methionine synthase (MS). Vitamin B6 is a cofactor for
the enzyme cystathionine β-synthase (CBS), which is
involved in the transsulfuration pathway where homo-
cysteine is converted into cystathionine. Vitamin B12 acts
as a cofactor for MTRR and MS, the latter catalyzing the
remethylation of homocysteine to methionine. Transco-
balamin II (TCN2) is essential for the uptake of vitamin
B12 from the intestine (Fig. 1). Suboptimal concentrations
of the B-vitamin cofactors as well as related genetic poly-
morphisms may affect the activity of these enzymes.
Themajority of studies on associations of B2 (3–9) and vita-

min B12 (4–14) with colorectal cancer have reported null find-
ings. A recent meta-analysis of nine studies on vitamin B6
intake and four studies on plasma vitamin B6 concentrations
revealed inverse associations with colorectal cancer risk (15).
Previous research on associations between genetic variants
and colorectal cancer risk has focused mainly on theMTHFR
677C→T and 1298C→A polymorphisms, which were gener-
ally inversely associatedwith colorectal cancer (1). In contrast,
genetic variants of MTR (14, 16, 17), MTRR (4, 18, 19), CBS
(4, 20–23), and TCN2 (18, 19) have been less studied in
relation to colorectal cancer, and show inconsistent associa-
tions. In addition to potential interactions between B-vitamins
and Single Nucleotide Polymorphisms (SNPs; refs. 24, 25),
there is also some evidence for an interaction between
plasma vitamin B6 and alcohol consumption (26).

Studies on plasma vitamin B2 (9), vitamin B6 (15),
and plasma vitamin B12 (9, 10) concentrations and colo-
rectal cancer risk are sparse. In addition, associations
between B-vitamins and colorectal cancer risk may be
modified by SNPs related to one-carbon metabolism
and alcohol consumption (24, 26). Therefore, we con-
ducted a large nested case-control study (including
1,365 colorectal cancer cases and 2,319 matched con-
trols) within the European Prospective Investigation in-
to Cancer and Nutrition (EPIC), which is sufficiently
large to address these questions.

Figure 1. One-carbon metabolism and related enzymes and genetic
polymorphisms. CBS, cystathionine β-synthase; CH2THF,
methylenetetrahydrofolate; CH3THF, methyltetrahydrofolate; MTHFR,
methylenetetrahydrofolate reductase (provision of 5-methylfolate for
homocysteine remethylation); MTR, methionine synthase (remethylation
of homocysteine to methionine); MTRR, methionine synthase reductase
(activation of methionine synthase); THF, tetrahydrofolate; TCN2,
transcobalamin-II (vitamin B12 transport).
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Materials and Methods

Study population and collection of blood samples
The design and methods of EPIC have previously been

described (27). Briefly, the EPIC cohort included par-
ticipants from 23 centers in 10 European countries
(Denmark, France, Greece, Germany, Italy, Netherlands,
Norway, Spain, Sweden, and the United Kingdom). Be-
tween 1992 and 1998, country-specific dietary question-
naires, standardized lifestyle and personal history
questionnaires, and anthropometric data were collected
from all participants, and a blood sample were taken
from 80% of the cohort members. Follow-up is based on
population cancer registries (Denmark, Italy, Netherlands,
Norway, Spain, Sweden, and the United Kingdom) or
through health insurance records, pathology registries,
and active contact with study subjects or next of kin
(France, Germany, and Greece). The follow-up period for
the present study was for cases included in reports re-
ceived at the International Agency for Research on Cancer
(IARC; Lyon, France) until June 2003 representing centers
using cancer registry data, and until March 2004 for
France, Germany, and Greece.
Fasting (46%) or nonfasting (54%) blood samples of≥30

mL were drawn. B-vitamins and related metabolites did
not significantly differ across fasting and nonfasting par-
ticipants. Blood samples were stored at 5°C to 10°C while
protected from light and transported to local laboratories
for processing and aliquoting (27). Exceptions from this
procedure were the EPIC-Oxford and EPIC-Norway cen-
ters, where whole blood samples were collected through a
network of general practitioners (Oxford and Norway)
and health-conscious people (Oxford) and transported
to a central laboratory via mail. The whole blood samples
were protected from light, but were exposed to ambient
temperatures for up to 48 hours. As B-vitamins are partly
degraded by such handling, all EPIC-Oxford (55 cases,
107 controls) and EPIC-Norway (5 cases, 9 controls) sam-
ples were excluded from the present analyses.
In all countries, exceptDenmark andSweden, bloodwas

separated into 0.5 mL fractions (serum, plasma, red cells
and buffy coat for DNA extraction). Each fraction was
placed into straws, which were heat sealed and stored in
liquid nitrogen (−196°C). One half of all aliquots were
stored at local study centers and the other half in the central
EPIC biorepository at the IARC. In Denmark, blood frac-
tion aliquots of 1.0 mLwere stored locally at −150°C under
nitrogen vapor. In Sweden, erythrocyte, plasma, and buffy
coat samples were fractioned prior to freezing, and stored
locally in −80°C freezers. This study was approved by the
Ethical Review Board of the IARC and those of all EPIC
centers. All EPIC participants have provided written con-
sent for the use of their blood samples and all data.

Nested case-control study design and selection of
study subjects
Colon cancer was defined as tumors in the cecum,

appendix, ascending colon, hepatic flexure, transverse

colon, splenic flexure, and descending and sigmoid colon
(C18.0-C18.7 as per the 10th revision of the International
Statistical Classification of Diseases, Injury and Causes of
Death), as well as tumors that are overlapping or unspec-
ified (C18.8 and C18.9). Colorectal cancer was defined
as a combination of colon and rectal cancer. Cancers of
the rectum were defined as tumors occurring at the recto-
sigmoid junction (C19) or rectum (C20). The present study
included 1,365 incident colorectal cancer cases (colon, n =
846; rectal, n = 519). The distribution of colon/rectal cases
by country was 204/174 in Denmark, 100/84 in Sweden,
30/3 in France, 14/13 in Greece, 98/61 in Germany, 106/
43 in Italy, 102/49 in the Netherlands, 78/43 in Spain, and
114/49 in the United Kingdom.
Controls with available blood samples were randomly

selected from cohort members still alive and free of can-
cer at the time of diagnosis of the cases. Controls were
matched to cases by gender, age (±2.5 years), and study
center (to account of center-specific differences in ques-
tionnaire design, blood collection procedures, etc.). An
exception were Danish cases (n = 378) and controls (n =
373), who were posthoc matched using the “greedy” al-
gorithm, a macro (gmatch) provided by the Mayo Clinic
College of Medicine (28, 29) to be run in SAS. The greedy
algorithm sorts cases and controls randomly and the
macro matches the first case with the closest available
control according to specified matching criteria, which
is repeated until all cases are matched. The mean (range)
difference in age between cases and controls in the over-
all study, except for the Danish population, and between
Danish cases and controls within each caseset, was 0
(−2.4 to 1.8) and −1.03 (−5.0 to 4.9) years, respectively.

Laboratory measurements
Vitamin B2measures included plasma concentrations of

riboflavin and FMN, and pyridoxal' 5-phosphate (PLP),
pyridoxal (PL), and 4-pyridoxic acid (PA) were measured
for vitamin B6 status. All B2 and B6 vitamers were deter-
mined by liquid chromatography-tandemmass spectrom-
etry in the same laboratory (30). For PLP, PL, PA, and
riboflavin, the within- and between-day coefficients of
variation (CV) were <11%,whereas for FMN the CVswere
12% to 22%. Within- and between-day CVs for total-B2
were 7% to 11% and for total B6 they were 3% to 7%.
Plasmavitamin B12wasdetermined by aLactobacillus leich-
mannii microbiological assay (31), and plasma methylma-
lonic acid (MMA; inverse marker for vitamin B12 status)
was measured with a method based on methylchlorofor-
mate derivatization and gas chromatography-mass spec-
trometry (32). Vitamin B12 and MMA concentrations
were analyzed in the same laboratory, with within- and
between-day CVs of <5% (32). Unspiked and spiked plas-
ma samples with unknown endogenous concentrations
were used for these experiments.
Eight polymorphisms of genes encoding enzymes in-

volved in the one-carbon metabolism were determined
by matrix-assisted laser desorption/ionization time-of-
flight mass spectrometry (33, 34). These included
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cystathionine β-synthase (CBS 699C→T; rs234706, and
the CBS 844ins68 insertion), methylenetetrahydrofolate re-
ductase (MTHFR 677C→T; rs1801133 and MTHFR
1298A→C; rs1801131), methionine synthase (MTR
2756A→G; rs1805087), methionine synthase reductase
(MTRR 66A→G; rs1801394), and transcobalamin II
(TCN2 67A→G; rs RsaI and 776C→G; rs1801198).

Statistical methods
Because riboflavin and FMN are interconvertable (35),

as are PLP and PL (36), and PA is formed from PL, we
considered the sum of riboflavin and FMN as a measure
for vitamin B2 status, and the sum of PLP, PL, and PA as
a measure of vitamin B6 status. Both the summary vari-
ables as well as individual vitamin B2 and B6 species
are presented. Differences in concentrations of vitamins
B2, B6, and B12, and MMA between different groups
were assessed by Mann-Whitney U tests or χ2 tests
where appropriate.
Relative risks [risk ratios (RR)] and 95% confidence

intervals (95% CI) for colorectal cancer risk in relation
to plasma B-vitamins were estimated by conditional lo-
gistic regression using the SAS LOGISTIC procedure,
stratified by the case-control set. Relative risks for colo-
rectal cancer were examined across quintiles with cutoff
points based on the distribution of the B-vitamins in all
2,319 controls combined. Potential confounders includ-
ed smoking status (never, former, current, missing), al-
cohol consumption (continuous), dietary fiber
(continuous), intake of red and processed meat (contin-
uous), physical activity (inactive, moderately inactive,
moderately active, active), educational level (none, pri-
mary school completed, technical/professional school,
secondary school, university degree, not specified),
and body mass index (kg/m2). Although none of these
variables substantially altered the crude risk estimates,
we present results of both the univariate and adjusted
models. The adjusted models were additionally adjust-
ed for mutual B-vitamins and folate. Likelihood ratio
tests were used to assess linear trends across categories
using values for quintile categories as the quantitative
score of exposure. We also tested for effect modification
by European region [north (Denmark, Sweden) versus
central (France, United Kingdom, the Netherlands, Ger-
many) versus south (Italy, Spain, Greece)], time from
blood donation to cancer diagnosis (median follow-up
time ≤3.6 years versus >3.6 years), age (≤60 years versus
>60 years), sex, alcohol intake (0-30 g/day versus ≥30 g/
day), and plasma folate concentrations (≤11.3 nmol/L
versus >11.3 nmol/L; based on median concentrations
in this cohort). Effect modification was tested by adding
the product term of the B-vitamins (as categorical vari-
ables) and potential effect modifiers in the model. To in-
vestigate whether potential effect modification by alcohol
intake was different for males and females, analyses were
done by adding the product term of the B-vitamins, alco-
hol intake, and sex in the model (while retaining lower-
order terms).

Associations between the polymorphisms and colo-
rectal cancer risk were studied with conditional logistic
regression. The risk estimates were calculated with the
wild types (the most common genotypes in the natural
population) as the reference categories. A trend test
with equally spaced integer weights (0, 1, 2) for the
genotypes was used to summarize the effect of each
polymorphism. Effect modification of the SNP-colorectal
cancer risk associations by B-vitamin concentrations and
alcohol consumption were studied with conditional
logistic regression, but by stratifying on country instead
of the matched sets and with age and sex as covariates.
All statistical tests were done with SAS statistical soft-

ware, version 9.1. Statistical tests were two-tailed and P <
0.05 was considered statistically significant.

Results

Characteristics of cases and controls
The distribution of sex, and mean age at recruitment

was comparable among the 1,365 cases and 2,319 con-
trols (Table 1). The median follow-up time between blood
donation and the diagnosis of colorectal cancer was 3.6
years (range, 0.0-10.3). Apart from the concentration of
the B6 vitamer PLP, which was higher in cases compared
with their matched controls (P = 0.02), the sum variables
of vitamins B2 and B6, vitamin B12 and MMA concentra-
tions were similar between cases and controls. The distri-
bution of vitamin B2 and B6 among controls was skewed,
with a longer tail at higher concentrations. Concentra-
tions of the vitamin B6 species correlated strongly with
each other after adjustment for age, sex, and study center
(Spearman correlation coefficients ranged from 0.64 to
0.74, all correlations P < 0.01; data not shown). In addi-
tion, riboflavin correlated with FMN (0.34; P < 0.01), and
the correlation between vitamin B12 and MMAwas −0.24
(P < 0.01).
Compared with women, among men concentrations

of the vitamin B2 sum and vitamin B12 were lower,
whereas the vitamin B6 sum concentration was higher
(Table 2). Participants <60 years had lower vitamin B2
sum and MMA concentrations, and higher vitamin
B12 concentrations, as compared with older individuals.
Among current smokers, the vitamin B2 sum, vitamin
B6 sum, and B12 concentrations were lower compared
with former and never smokers. The sum variables of
vitamin B2 and B6 were also lower among participants
from southern European countries compared with those
from central and northern European countries. Indivi-
duals consuming alcohol of ≥30 g/day had lower con-
centrations of the vitamin B2 sum and vitamin B12
compared with those drinking less, except for vitamin
B6. Finally, vitamin B12 concentrations were slightly
higher in those with the variant TCN2 677GG genotype,
whereas concentrations of other vitamins did not differ
according to genotype (P for all differences >0.05; data
not shown).
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Associations between B-vitamins and
colorectal cancer
Matched analyses revealed that vitamins B2 and B6

were inversely associated with colorectal cancer, with
RRs per quintile of 0.94 (95% CI, 0.89-0.99; Ptrend =
0.02) for the sum of vitamin B2, and 0.94 (95% CI, 0.89-
0.99; Ptrend = 0.01) for the sum of vitamin B6 (Table 3).
These associations were similar after further adjustment.
Regarding the individual vitamers, risk reductions were
strongest for FMN (5th versus 1st quintile, 35%; Ptrend <
0.01) and for PLP (41%; Ptrend < 0.01). When stratifying
by anatomic site, these associations were observed for co-
lon cancer risk, but not for rectal cancer risk with an ex-
ception for PLP. Vitamin B12 was not associated with
colorectal cancer risk (Table 3), nor was plasma folate,
as presented elsewhere (37). All the models as presented
in Table 3 were also additionally adjusted for mutual B-
vitamins and folate. However, these analyses did not ma-
terially change associations (data not shown).
We also assessed potential effect modification of the

vitamin-colorectal cancer associations by sex, age, European
region, time between blood donation and cancer diagnoses,

and plasma folate concentrations. The association between
vitamin B2 and colorectal cancer was modified by folate
status (Pinteraction = 0.03), whereby an inverse association
of the sum of vitamin B2 and colorectal cancer was ob-
served among individuals with folate concentrations
>11.3 nmol/L (51% risk reduction for the 5th versus 1st
quintile; Ptrend<0.01), and a 7% risk increase among subjects
with folate concentrations <11.3 nmol/L (Ptrend = 0.71). Al-
though none of the other interaction terms were statistically
significant, we also observed significant trends for the asso-
ciations between vitamin B2 sum and vitamin B6 sum with
colorectal cancer risk among females, individuals <60 years,
and those living in central European countries. Further-
more, the association of vitamin B6 with colorectal cancer
risk was stronger in individuals diagnosed within the first
3.6 years after enrollment compared with associations in in-
dividuals diagnosed later. Relative risks of 5th versus 1st
quintile observed within the first 3.6 years were 0.61 (95%
CI, 0.43-0.86; Ptrend < 0.01) for the sum of vitamin B6, 0.55
(95% CI, 0.39-0.77; Ptrend <0.01) for PLP, and 0.59 (95% CI,
0.41-0.83; Ptrend <0.01) for PL. Relative risks observed after
the first 3.6 years were 0.80 (95% CI, 0.56-1.14; Ptrend = 0.43)

Table 1. Characteristics of incident colorectal cancer cases and their matched controls

Cases Controls Pdifference

Number of individuals 1,365 2,319
Sex, female, n (%) 697 (51) 1213 (52) 0.54
Mean age in years (min-max)

At recruitment 58.9 (30.1-76.9) 58.7 (30.0-76.6) 0.40
At blood donation 59.1 (36.8-77.0) 58.9 (36.6-76.6) 0.44
At diagnosis 62.8 (37.7-81.2) N.a.
Lag time 3.6 (0.01-10.3) N.a.

Smoking status, n (%) 0.02
Never 559 (41) 1,024 (44)
Former 447 (33) 774 (33)
Current 344 (25) 508 (22)

Alcohol drinking, n (%) <0.01
Abstainers 93 (7) 166 (7)
1-30 g/day 983 (72) 1784 (77)
≥30 g/day 281 (21) 372 (16)

Median (5th-95th percentile)
Vitamin B2 sum, nmol/L 20.6 (9.4-65.7) 20.6 (10.1-74.7) 0.36
Riboflavin, nmol/L 14.8 (6.1-60.6) 14.8 (5.9-53.7) 0.37
FMN, nmol/L 5.4 (2.1-16.3) 5.3 (1.9-15.3) 0.20
Vitamin B6 sum, nmol/L 63 (31-197) 65 (32-222) 0.20
PLP, nmol/L 33.2 (14.2-111) 32.1 (13.2-93.8) <0.01
PL, nmol/L 13.4 (6.7-44.0) 13.1 (6.2-38.3) 0.16
PA, nmol/L 16.5 (7.8-72.5) 17.3 (7.8-74.3) 0.17
Cobalamin, pmol/L 288 (162-498) 288 (161-501) 0.97
MMA, μmol/L 0.17 (0.12-0.32) 0.17 (0.12-0.30) 0.32

NOTE: Differences in plasma concentrations of the vitamins B2, B6, and B12, and MMA were assessed by Wilcoxon signed rank
test, whereas categorical variable differences were assessed by McNemar's tests.
Abbreviation: N.a., not applicable.
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for the sum of vitamin B6, 0.67 (95% CI, 0.48-0.94; Ptrend =
0.05) for PLP, and 0.88 (95% CI, 0.63-1.25; Ptrend = 0.86) for
PL. However, lag time did not significantly modify the
overall association between the sum of vitamin B6,
PLP, and PL with colorectal cancer risk, as indicated
by Pinteraction of 0.48, 0.57, and 0.29, respectively.
In addition, we explored the associations between the

vitamins and colorectal cancer risk by subgroups of alco-
hol intake, and observed stronger inverse associations of
the vitamin B2 sum and the vitamin B6 sum with colorec-
tal cancer risk in individuals drinking alcohol of ≥30 g/day
(Table 4). Further stratification of these alcohol analyses by
sex revealed even stronger inverse associations for the vita-
min B6 sum in males consuming alcohol ≥30 g/day com-
pared with males who drink less alcohol (Ptrend < 0.01;
Pinteraction = 0.01). Associations between individual vita-
min B2 and B6 species with colorectal cancer risk in
subgroups of alcohol intake did not differ materially
from those associations observed for sum scores. Fur-
thermore, stratified analyses using a cutoff point of 15
g/day of alcohol did not materially alter associations
between any of the B-vitamins and colorectal cancer
risk (data not shown).

The polymorphisms and their associations with
colorectal cancer risk
All the SNPs were in Hardy-Weinberg equilibrium (ℵ2

test P values >0.05 for all SNPs). Table 5 shows that the
genotype distributions of the CBS 699C→T, CBS

844ins68, TCN2 67A→G, and TCN2 776C→G polymorph-
isms did not differ among colorectal, colon, and rectal
cases and their matched controls, nor were these poly-
morphisms associated with cancer risk. Stratification by
European region yielded similar associations between the
studied genotypes and colorectal cancer risk (data not
shown).
Most of the associations between the SNPs and

colorectal cancer were not modified by quintiles of
B-vitamin status (Pinteraction > 0.19 for all relevant in-
teractions; data not shown). A previous report (37) in-
cluded MTHFR 677C→T, MTHFR 1298A→C, MTR
2756A→G, and MTRR 66A→G polymorphisms, which
were not independently associated with colorectal
cancer risk. However, among these SNPs, we ob-
served effect modification of the association between
MTRR 66A→G and colorectal cancer risk by vitamin
B2 status as measured in the current study (Pinteraction =
0.04). The variant MTRR 66GG genotype conferred a sta-
tistically significantly lower colorectal cancer risk in indi-
viduals with concentrations <18.1 nmol/L of the sum of
B2, with RR of 0.57 (95% CI, 0.35-0.93; Ptrend = 0.02),
whereas a statistically nonsignificantly higher colorectal
cancer risk was observed in individuals with concentra-
tions >33.4 nmol/L, with RR for GG versus AA of 1.24
(95% CI, 0.75-2.04, Ptrend = 0.51). Finally, the SNP-colorectal
cancer associations were neither modified by B-vitamin
concentrations, nor by alcohol consumption (Pinteractions > 0.05;
data not shown).

Table 2. Median concentrations (5th-95th percentile) of indices for vitamin B2, B6, and B12 by
demographic and lifestyle characteristics in control cohort members (n = 2,319)

n Vitamin B2 indices

Vitamin B2 sum (nmol/L) Riboflavin (nmol/L) FMN (nmol/L)

Sex Male 1,105 19.2 (9.5-71.3) 13.4 (5.6-58.9) 5.3 (2.2-17.9)
Female 1,213 21.8 (10.9-77.0) 16.2 (6.9-64.5) 5.4 (2.0-15.7)
Pdifference* <0.001 <0.001 0.60

Age <60 years 1,274 20.0 (9.8-73.3) 13.8 (5.9-58.9) 5.7 (2.2-16.4)
≥60 years 1,044 21.4 (10.4-74.7) 15.9 (6.8-64.2) 4.9 (2.0-15.8)
Pdifference* <0.005 <.001 <0.001

Region† North 731 23.4 (12.3-83.1) 16.6 (6.8-64.2) 6.5 (3.1-16.3)
Central 999 21.5 (10.8-80.9) 16.0 (7.4-66.2) 4.8 (1.9-16.5)
South 588 16.3 (8.1-64.0) 11.2 (4.8-51.5) 4.9 (2.0-14.9)
Pdifference

‡ <0.001 <0.001 <.001
Smoking Never 1,024 21.8 (11.2-83.4) 16.3 (7.0-68.7) 5.5 (2.1-16.5)

Former 774 21.0 (9.6-87.7) 15.0 (6.3-71.8) 5.3 (2.1-16.8)
Current 507 18.4 (9.5-57.8) 12.3 (5.1-47.0) 5.4 (2.1-14.2)
Ptrend

§ <0.005 <0.005 0.22
Alcohol

(g/day)
Abstainers 166 19.3 (8.9-87.6) 14.3 (5.7-65.3) 5.0 (2.2-15.0)
1-30 1,784 21.0 (10.4-73.3) 15.3 (6.5-62.6) 5.3 (2.0-15.8)
≥30 372 19.4 (9.4-76.2) 12.7 (5.4-53.7) 6.0 (2.3-21.4)
Pdifference* 0.03 <0.001 <0.005

(Continued on the following page)
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Discussion

In this large European cohort, we investigated the as-
sociations of plasma vitamins B2, B6, and B12, and ge-
netic variants of the one-carbon metabolism with
colorectal cancer risk. Overall, plasma vitamin B2 and
B6 status was inversely associated with colorectal can-
cer. In addition, we observed that the inverse association
between vitamin B6 and colorectal cancer was more pro-
nounced among males who consumed >30 g/day of al-
cohol. None of the SNPs were associated with colorectal
cancer risk, and generally the vitamins did not modify
these associations.
The present study is the largest prospective study on

plasma B-vitamins and colorectal cancer risk published
so far, allowing for well-powered subgroup analyses.
Extensive information on lifestyle factors enabled us to
control for potential confounders and assessment of
possible effect modifications. Another important
strength of this study is the collection of blood samples
prior to cancer diagnosis. Moreover, the study centers
collected and stored blood samples according to a stan-
dardized protocol (27), and all biochemical analyses
were done in one laboratory, thereby optimizing sample
treatment and avoiding between-laboratory method
variability. The overall observed associations between

the vitamins and age, sex, and smoking status (23, 33,
38) are in line with previous findings, supporting the
integrity of biochemical data. Furthermore, the range
of plasma concentrations observed for vitamin B12
(10) and vitamin B6 (9) were comparable with those
in other European studies, whereas vitamin B6 concen-
trations were slightly lower compared with those ob-
served in American studies (39–41), which may be
explained by widespread supplement use in the United
States. Data on supplement use, and specifically use of
B-vitamins, in the EPIC cohort are sparse. However, in a
subsample of the EPIC population, single 24-hour re-
calls revealed a clear north-south gradient in supple-
ment use, with higher consumption in northern than
in southern European countries, and higher consump-
tion for women than for men (42). Moreover, none of
the European countries applied mandatory fortification
of any of the B-vitamins. As national fortification poli-
cies vary considerably throughout the European Union,
the European Commission aims to harmonize voluntary
food fortification across European countries in the near
future (43).
Two of four studies on the associations between vita-

min B6 and colorectal cancer (9, 39–41) reported median
follow-up time of 6 years (9) and 10 years (41), compared
with the present study with a median follow-up time of

Table 2. Median concentrations (5th-95th percentile) of indices for vitamin B2, B6, and B12 by
demographic and lifestyle characteristics in control cohort members (n = 2,319) (Cont'd)

Vitamin B6 indices Vitamin B12 indices

Vitamin B6 sum (nmol/L) PLP (nmol/L) PL (nmol/L) PA (nmol/L) Cobalamin (pmol/L) MMA (μmol/L)

69.5 (33.5-190.5) 35.6 (15.1-97.4) 13.8 (6.8-36.1) 18.4 (8.5-56.5) 274 (154-467) 0.17 (0.12-0.32)
60.5 (31.1-288.5) 31.2 (13.4-130.0) 13.1 (6.6-58.1) 15.2 (7.3-106) 303 (170-517) 0.17 (0.11-0.31)

<0.001 <0.001 0.10 <0.001 <0.001 0.49
62.9 (32.1-217.8) 33.9 (14.7-115.0) 12.8 (6.5-41.9) 15.6 (7.5-67.0) 294 (167-488) 0.16 (0.11-0.27)
66.2 (32.1-228.2) 32.8 (13.8-105.0) 13.9 (6.9-45.9) 17.7 (8.3-81.8) 279 (153-506) 0.18 (0.12-0.35)

0.21 0.02 <0.005 <0.001 <0.005 <0.001
75.0 (34.0-328.6) 36.9 (14.3-141.5) 16.2 (6.5-76.0) 21.1 (8.9-125) 290 (166-478) 0.17 (0.12-0.31)
65.4 (32.4-211.3) 33.0 (14.8-110.0) 13.6 (7.3-37.1) 16.3 (8.1-64.8) 276 (161-481) 0.18 (0.12-0.32)
55.2 (28.6-115.4) 29.9 (13.3-73.2) 11.0 (6.2-22.9) 13.5 (6.5-29.6) 304 (160-550) 0.16 (0.11-0.31)

<0.001 <0.001 <0.001 <0.001 <0.001 <0.001
65.4 (33.3-225.9) 34.2 (15.5-109.0) 13.7 (7.2-47.0) 16.5 (8.1-75.9) 296 (166-503) 0.17 (0.12-0.30)
69.1 (34.0-216.1) 35.1 (15.5-120.0) 14.2 (7.1-40.1) 18.2 (8.5-71.0) 283 (161-498) 0.17 (0.12-0.32)
57 (26.5-220.6) 28.9 (11.8-105.0) 11.9 (5.4-41.6) 14.7 (6.6-64.9) 277 (147-482) 0.16 (0.11-0.33)

0.91 0.05 0.76 0.78 <0.005 0.91
59.4 (25.7-228.2) 29.5 (12.2-120.0) 13.2 (5.2-54.8) 16.7 (6.8-83.5) 321 (183-527) 0.16 (0.11-0.32)
63.4 (32.0-227.9) 32.2 (14.3-109.0) 13.2 (6.6-44.7) 16.3 (7.8-74.3) 287 (161-496)0 0.17 (0.12-0.32)
75.5 (35.2-207.7) 41.7 (16.4-116.0) 14.8 (7.7-38.4) 19.2 (8.1-57.3) 280 (162-481) 0.16 (0.11-0.28)

<0.001 <0.001 <0.001 0.001 <0.005 <0.005

*Pdifference (two-sided) calculated by Mann Whitney U test; abstainers were excluded from statistical analyses on alcohol consumption.
†North: Sweden and Denmark; Central: United Kingdom.
‡Pdifference (two-sided) calculated by Kruskall Wallis test.
§Ptrend (two-sided) calculated by regression models.
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3.6 years. A potential drawback of cohort studies with
relatively short follow-up is reverse causality, i.e., the
phenomenon that preclinical disease influences exposure
status. This is more likely to affect individuals diagnosed
early than those diagnosed later. In this respect, Lee et al.
(41) previously observed a stronger inverse association
between vitamin B6 and colorectal cancer in an earlier
compared with a later follow-up period. Although in
our study the associations between vitamin B6 sum and
all its individual species and risk of colorectal cancer
seemed more pronounced in those diagnosed within
the first years of follow-up compared with those diag-
nosed later, it should be emphasized that there was no
statistical evidence for effect modification by the duration
of follow-up. Nevertheless, to present analyses according
to different lengths of follow-up time should be recom-
mended in future studies.
The most important dietary sources of vitamin B2

are milk and dairy products (44), whereas vitamin B6
may be obtained from various food groups, including
fruit, vegetables, and meat (45). After ingestion, free
FMN and FAD are converted to riboflavin, whereas
all vitamin B6 species are converted into PLP and PL.
FMN acts as a cofactor and PA is the catabolite prod-
uct of these reactions (36, 45). As the sum variables for
vitamin B2 and vitamin B6 might account for any in-
terconversion between the two B2 species (35, 46–48)
and the three B6 species (36, 45, 49), they are used
as supplementary variables to determine vitamin B2
and vitamin B6 status, respectively.
Few epidemiologic studies have investigated plasma

concentrations of B-vitamins in relation to colorectal can-

cer risk (9, 10, 39, 41). The present study observed a risk
reduction of 29% for individuals in the highest quintile of
the sum of vitamin B2 concentration compared with
those in the lowest quintile. Although riboflavin has been
suggested as the best plasma marker of vitamin B2 status
(50), no relation with colorectal cancer was found for
riboflavin, whereas it was found for FMN. FMN serves
as a cofactor in the synthesis of PLP (2, 51), which is
the active form of vitamin B6. Interestingly, in line with
previous studies on plasma PLP (39, 41), we observed an
inverse association between the sum of vitamin B6 and
colorectal cancer. We did not observe an association be-
tween plasma vitamin B12 and its marker MMA and co-
lorectal cancer, whereas Dahlin et al. (10) observed that
plasma vitamin B12 was inversely associated with rectal
cancer. In the Aspirin/Folate Polyp Prevention Study,
which investigated the effects of folic acid supplementa-
tion on incidence of new colorectal adenomas in persons
with a history of adenomas, high plasma concentrations
of PLP and riboflavin at baseline seemed to protect
against colorectal adenomas (52). Methodologic differ-
ences in cross-sectional, prospective, and intervention
studies, as well as differences between data on intake
(3–8, 11–13, 26) and plasma concentrations (9, 10, 14,
39, 41), may have resulted in inconsistencies between
studies. However, taking all epidemiologic studies into
account, current evidence suggests a role for the vitamins
B2 and B6 in colorectal carcinogenesis.
Notably, folate and vitamin B12 are carriers of one-

carbon units, whereas vitamins B2 (53) and B6 (54) are
involved in many pathways other than one-carbon me-
tabolism. Vitamin B2 serves as cofactor in fat, amino acid,

Table 5. Distribution of genotypes by cancer site, and their associations with colorectal cancer risk

SNP Colorectal cancer-All Colon Rectal

Cases/
Controls

OR (95% CI) Cases/
Controls

OR (95% CI) Cases/
Controls

OR (95% CI)

CBS 699 CC 583/1,056 1 356/702 1 226/361 1
CT 603/1,040 1.04 (0.90-1.21) 374/656 1.12 (0.94-1.35) 230/389 0.93 (0.74-1.18)
TT 141/253 1.00 (0.79-1.26) 83/148 1.11 (0.82-1.50) 58/103 0.87 (0.60-1.25)
Ptrend 0.78 0.25 0.39

CBS ins 0 ins 1,233/2,150 1 761/1,367 1 472/783 1
1 ins 212/358 1.02 (0.85-1.23) 137/231 1.04 (0.83-1.31) 75/127 1.00 (0.73-1.36)
2 ins 9/18 0.89 (0.40-2.00) 4/12 0.65 (0.21-2.04) 5/6 1.29 (0.39-4.34)
Ptrend 0.89 0.96 0.87

TCN2 67 AA 1,026/1,789 1 622/1,147 1 406/649 1
AG 263/490 0.95 (0.80-1.12) 162/312 0.98 (0.79-1.21) 100/181 0.87 (0.66-1.15)
GG 19/18 0.87 (0.50-1.53) 13/22 1.03 (0.51-2.08) 5/16 0.54 (0.20-1.51)
Ptrend 0.42 0.88 0.15

TCN2 776 CC 415/749 1 253/482 1 162/273 1
CG 648/1,170 0.99 (0.85-1.16) 401/762 0.99 (0.81-1.20) 248/412 1.01 (0.78-1.30)
GG 266/435 1.10 (0.90-1.33) 160/266 1.13 (0.88-1.46) 105/169 1.04 (0.76-1.43)
Ptrend 0.45 0.42 0.81

NOTE: Wild type is the reference category.
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carbohydrate, and vitamin metabolisms (53), whereas vi-
tamin B6 has been shown to reduce oxidative stress and
affects cell proliferation and angiogenesis (55). As colo-
rectal cancer risk was not related to concentrations of fo-
late (37) and vitamin B12 in this cohort, the inverse
association between risk and vitamin B2 and B6 may re-
flect mechanisms not involving one-carbon metabolism.
Both vitamin B2 and B6 are cofactors within the kynure-
nine metabolism which is related to inflammation (56).
An inverse association of PLP with the inflammatory
marker C-reactive protein, which has been related to sev-
eral cancer types, has also been reported (57).
Alcohol consumption may reduce bioavailability of fo-

late (58) and vitamin B6 (59). So far, only two studies
have investigated the interaction among vitamin B6 sta-
tus, alcohol consumption, and colorectal cancer (39, 60),
and both studies suggest that a sufficient vitamin B6 sta-
tus may prevent the development of colorectal cancer
particularly in persons with high alcohol consumption,
results which are in agreement with data for males of
the present study.
Regarding the role of genetic variants in the one-

carbon metabolism and colorectal cancer, we did not
observe that the polymorphisms investigated were asso-
ciated with colorectal cancer. Although some associa-
tions have been reported, previous studies did not
consistently show associations of similar one-carbon
SNPs and colorectal cancer (4, 18–21, 23). Furthermore,
generally variable B-vitamin status did not modify the
associations between SNPs and colorectal cancer risk.
Despite the large study population, the sample size
might still have been too small to detect associations
with colorectal cancer risk, interactions between genes
and European region, and interactions between genes
and vitamins, and may also have resulted in chance
findings. Nevertheless, we observed that the association
between MTRR 66A→G and colorectal cancer was mod-
ified by vitamin B2 status. Furthermore, the polymorph-
isms presented in this study may not cover all genetic
variability of the studied genes, but they represent a col-
lection of polymorphisms in genes encoding central en-
zymes of the one-carbon metabolism. All these variants
have been shown to influence one-carbon metabolism
(61) and some have been related to cancer (18, 19, 23).

Future studies could adopt a more pathway-oriented
approach to the data analysis in a mathematical model,
integrating all the B-vitamins and polymorphisms in-
volved in the one-carbon metabolism (62).
In summary, this large prospective European multicen-

ter study revealed that plasma concentrations of vitamins
B2 and B6 were inversely associated with colorectal can-
cer risk. However, unlike previous studies, none of the
studied polymorphisms related to one-carbon metabo-
lism were associated with colorectal cancer in this large
European cohort.
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